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Filters with Single Transmission Zeros at Real
or Imaginary Frequencies

RALPH LEVY,

Abstract—A new unified theory is presented for the synthesis of

exactly equiripple low-pass prototypes having: a) oue simple pole of
attenuation at a real frequency; or b) a single pair of real-axis trans-
mission zeros (giving linear-phase performance). These types of filters

may be regarded as representing the least possible degree of complication

over the conventional Chebyshev filter, and are usually realized with one
extra cross coupling in the structure. It is demonstrated that this gives
much improved skh’t selectivity in the case of a tinite frequency pole,
making it a viable intermediate case between the Chebyshev and elliptic-
function filters, while in the case of real-frequency zeros, very tlat group
delay over 50 percent of the passband is achieved with minimal cost in
insertion 10SSand skirt rejection. Approximate and exact synthesis
techniques are described, including results for the previously neglected
odd-degree case. Experimental results demonstrate agreement with
theory.

I. INTRODUCTION

T HIS PAPER describes two classes of filters which have

quite distinct applications, yet are closely related

mathematically and in physical realization. They are
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distinguished by the location of their transmission zeros

(attenuation poles), which, in th~ case of the first class, are

at real frequencies, and in the case of the second class are at

imaginary frequencies (i.e., on the real axis of the complex

frequency plane). In this paper filters having only one pair

of transmission zeros are described, not only because these

cases may be synthesized exactly with no difficulty, but also

because they give important substantial improvements

compared with conventional Chebyshev equiripple filters, yet

with little practical difficult y of physical realization.

The transmission zeros may be realized by cross coupling

a pair of nonadjacent elements of the filter, negatively to

give real-frequency transmission zeros, positively to give

real-axis zeros. The first type of filter gives improved skirt

attenuation performance, and the second gives improved

passband delay characteristics compared with the ordinary

Chebyshev filter.

The first application of coupling between nonadjacent

resonators at microwave frequencies appears to have

originated with Kurzrok [1], [2]. He showed that to obtain

finite frequency attenuation poles it was necessary to
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reverse the “natural” phase of the extra cross coupling. It

was not until much later that Rhodes [3] showed that when

the cross couplings have the same phase as the direct

couplings then the finite transmission zeros produced are

either complex or on the real axis of the complex frequency

plane. Hence they may be used to design filters having

nonminimum-phase characteristics, e.g., linear-phase filters

[4]. Other authors have employed cross couplings to realize

elliptic-function filters, and recently more general types

where

cos~=x (3)

Cos e =
xJa2 – I

Ja2 - X2

(4)

J—al—x2
sin 8 =

Ja2 - #
(5)

which may be expressed in terms of Chebyshev functions as

~(x) = (a + ~a2 - l)2xTn_ l(x) + (a – ia2 – l)2x~_,(x) – 2a2~_2(x)

2(a2 – X2)
(6)

having both finite attenuation poles and delay equalization
This rational form is used in the exact synthesis method of

have been described [5]-[7].
Section III-B, The low-pass prototype filter has an insertion

loss given by
Filters with several cross couplings tend to be relatively

difficult to tune, encouraging some designers to look at the A = 1 + hzfz(x) (7)

possibility of synthesizing high-ordered filters having just

one or two finite frequency transmission zeros [8], [9].
where h is small for small passband ripple levels, and the

However, the low-pass filters discussed in [8] are not equi-
maximum passband return loss is defined as

ripple and are therefore nonoptimum. The bandpass filters AR = 10 Ioglo (1 + 1/112) dB, (8)
described bv Cristal r91 are for a somewhat limited atmlica- ~. 1 --1 . .

tion (interdigital filters of broad bandwidth) and require

extra resonant elements rather than cross couplings.

II. APPROXIMATION FUNCTIONS FOR SINGLE-POLE

FILTERS

A. Filters with a Real-Frequency Attenuation Pole

It is perhaps surprising that the low-pass rational function

to be introduced apparently has not been utilized previously,

at least for the applications described here, since it is

derived by a straightforward application of Chebyshev’s

theorem, a brief description of which maybe found in [10].

The rational function has simple poles at x = ~ a, and takes

the form

j-(x) = a2p’@)– X2
(1)

where P.(x) is a polynomial of degree n. It is shown sche-

matically in Fig. 1 for the case n = 8 with a real value for

the parameter a. Application of Chebyshev’s theorem gives

the function (1) specifically in the form

f(x) = cos [(n - 2)4 + 26] (2)

The location of the stopband minimum shown in Fig. 1

is derived by differentiation of (2) or (6), giving

X22 = a2 + 2ada2 – l/(n –

and the filter attenuation at this minimum

As = 10 Ioglo [1 + h2f2(x2)]

Since l/h2 >> 1 and h2~2(x2) >> 1, we have

2) (9)

is, therefore,

dB. (lo)

Ax + As = 20 log10~(x2) dB (11)

which is independent of the passband ripple level.

The edge of the stopband is the value xl indicated in

Fig. 1, and is derived numerically by iteration. This enables

the value of AR + As given by (11) to be plotted as a func-

tion of xl, as shown in Fig. 2 for filters of degree 3 through

10. Similar graphs are available for Chebyshev arid optimum

elliptic-function filters [11], and when the characteristics

of the three types of filters are compared it is found that

for any given degree they are almost exactly parallel to one

another. This is illustrated in Fig. 3, which compares

elliptic-function, single-pole, and Chebyshev filters all of

degree 8. Here it is seen that the Chebyshev-filter plot of

——
1 ———--——- ———————————

I II

I
II

I II

I II

I —--- ~--

% 4-X, -1 :
-—

-1 I

Fig. 1. Rational function with single pole (case n = 8).
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Fig. 3. Comparison of 8th-degr~i#ptic, single-pole, and Chebyshev

AR + A~ parallels that of the single-pole filter at ordinate

values approximately 22 dB lower, and the elliptic filter

parallels the single-pole filter at ordinate values approx-

imately 18 dB higher. The ordinate differences between

the three types of filters are given in Table I. Note that the
single-pole filters of degrees 3 and 4 are identical to the

elliptic filter, as expected. The improvement in skirt attenua-

TABLE I
ATTENUATION DIFFERENCES BETWEEN SINGLE-POLE FILTERS AND
CHEBYSHEVAND ELLIPTIC FILTERS AT THE STOPBANDEDGE FREQUENCY

tion over a Chebyshev filter upon introducing finite poles

is quite large when one finite pole is introduced, and be-

comes successively less as subsequent poles are introduced.

Evidently the extra complexity of the elliptic-function filter

compared with the single-pole filter may not always be

justified.

The physical realization and synthesis of the element

values of this low-pass prototype are described in Section

III.

B. Filters with Real-Axis Transmission Zeros

(Linear-Phase Filters)

Here the mathematical similarity between the two classes

of filters becomes apparent, since it is necessary only to take

the function (6) and make the substitution

a=jc (12)

where a is real. The function becomes

f(x) = (J~2 + 1 + r02xTn. ,(X) + (JC2 + 1 – C)’xq.,(x) – 2a’q_,(x) (13)
2(02 + X2) .
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Hence the insertion loss function for an equiripple low-pass

titer having a pair of real-axis transmission zeros at

x = *jo is

A = 1 + hzfz(x). (?

The introduction of the real-axis transmission zeros has

a large effect on the phase characteristics of this filter com-

pared to a similar Chebyshev filter. If the value of a is

chosen correctly, then the group-delay characteristic in the

low-pass band becomes very flat over approximately 50

percent of the band, and also is improved over the rest

of the band. It is possible to realize group-delay curves

corresponding to undercoupled, critically coupled, and over-

coupled characteristics. Not surprisingly the optimum

value for o is quite close to unity. The group delay may be

calculated from the synthesized circuit, and by slight adjust-

ment of a it is possible to iterate rapidly to the desired delay

characteristic.

In this case the skirt attenuation is less than that of the

Chebyshev filter of identical degree. In practice it is found

that for values of a near unity, giving a flat delay character-

istic, and for attenuation values in the useful range of about

20-80 dB, the skirt attenuation of the nth-degree linear-

phase filter is almost identical to that of the standard

Chebyshev filter of degree (n – 1). Hence it is hardly

necessary to present special curves for this type of linear-

phase filter. An example design is presented in Section V.

III. SYNTHESISOF SINGLE-POLE PROTOTYPEFILTERS

The basic low-pass prototype filters may be synthesized

as the circuits shown in Fig. 4(b) for n odd, and in Fig. 4(a)

for n even. These are the admittance-inverter equivalent

circuits [4], where the rectangular boxes represent ideal

admittance inverters. The central elements of the circuit
for n odd are given primed values (g~’,g~ + ~,C~’) since

alternative equivalent circuits will be presented in this case

‘‘‘Q
------

1 0, + Qm.t . Qm
------

Jm, Jm

‘&

---

9* gin., ‘Jm-----

(a)

r--l n

9’m+!

- -

(b)

Fig. 4. Low-pass prototype filters. (a) n even (m = n/2). (b) n odd
(m = (H – 1)/2).
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.-- —-
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u \l\~

Jm., I h I l\

— L———l -—

(b)

Fig. 5. Equivalent circuits for n odd. (a) n odd (alternative sym-
metrical realization). (b) n odd (asymmetrical realization).

(see Fig. 5). The extra cross-coupling inverter of admittance

J~- ~ is positive for the linear-phase filter, and negative for

the filter having a real-frequency pole. The extra cross-

coupling capacitance C~’ is also positive for the linear-

phase filter and negative for the single-pole filttx. Hence it

cannot give a direct practical realization of the single-pole

filter, In this case, one of the equivalent circuits presented

in Fig. 5 could be used,

In the previous statements the term “extra” denotes the

fact that the extra cross coupling is not present in the case

of a conventional Chebyshev filter, and that this cross-

coupling element represents the only extra feature in the

new design.

Before describing results for the exact synthesis, an

approximate synthesis technique will be presented, which is

particularly useful for the case of linear-phase filters.

A. Approximate Synthesis

This may be achieved by introducing cross coupling

between one pair of nonadjacent elements oft he standard

Chebyshev filter while leaving all but one of the elements

unchanged. In the case of n even, where the low-pass
prototype filter is shown in Fig. 4(a), the element values are

given by the well-known formulas

2 sin ~
2n

gl. _
Y

~ sin (2V – l)n sin (2r + I)n

2n 2n
0?9,-1 = ,

y2 -!- sinz ~
n

(r = 1,2,”. “,m), m = n/2



176 ---- —- . .. -—-. . -.. .—--- ... ..——----—- ———.-”,
ltibb lKANSAC 1 lUNS UN MICKUWAVb 1 HWJKY AND TECHNIQUES, APRIL 1Y 10

‘= ‘inh(:sinh-’i)
S = (il + hz + h)z (the passband VSWR)

J~=&”” m odd or l/4~. . . m even

J~_l=O””” for Chebyshev filters. (14)

In order to introduce transmission zeros at @ = i-a, the

required value of J~ _ ~ is given by

– J.’
Jnt- I = ~agm)2– Jm’2 (15)

where J~’ is a slightly changed value of J~ as in (17). This

formula holds for both negative and positive cross coupling,

‘s~

i.e., for a = jcr

J~_l =
J~’

(ag~)2 + J~’2 “

Introduction of J~_ ~ mismatches the filter, and

a good VSWR at midband it is necessary to

value of J~ slightly according to the formula

J.’ = J~

1 + J~J~_l “

(16)

to maintain

change the

(17)

No other elements of the original Chebyshev filter are

changed. The proof of the equations (1 5)–(17) is given in

Appendix I.

Typical results for this approximate design procedure are

shown in Figs. 6 and 7. In each case the original Chebyshev
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prototype filter is of degree n = 8, and a ripple VSWR of

1.05 is chosen, in accordance with typical specifications for

modern communications filters. In the case of the linear-

phase design depicted in Fig. 6 having transmission zeros

at cr = t 1.07, the delay is essentially flat over 50 percent

of the passband, and the VSWR has deteriorated only

slightly. The exact element values derived by synthesis are

compared with the approximate values in Table II, and

differ at most by 3 percent. The implication here is that the

approximate theory may be used with confidence for linear-

phase prototypes, especially knowing that the element

values of a bandpass filter based upon the design will tune

to give the desired exact equiripple VSWR characteristic,

since in practice the various couplings need to be slightly

readjusted as part of the tuning process.

The result of introducing a finite attenuation pole at

co = 1.62, as shown in Fig. 7, is not quite as satisfactory

with the approximate theory. The VSWR has deteriorated

to a greater extent, and the cutoff frequency has increased

by approximately 10 percent. It is possible to amend (17) to

force a perfect match at band edge, but it is found that the

in-band VSWR is still quite poor compared with the

specification. The approximate and exact element values

given in Table II show quite large differences for the central

elements (5 percent for gz and .ld, 22 percent for .13), and

bandpass filters based on the approximate design would

tend to have the large VSWR ripples near the band edges

in practice.

Another, perhaps more compelling, requirement for an

exact synthesis is that in the latter case (real-frequency

poles), (15) and (17) do not have a reasonable solution when
an attempt is made to move the finite pole closer to the edge

of the passband. Thus in the case of our N = 8, VSWR =

1.05 example, it is impossible to move the pole closer than

co = 1.53. Of course since the filter cutoff increases beyond

unity the renormalized pole value is actually less than 1.53,

but the VSWR deteriorates quite severely. The fact that the

VSWR is not exactly equiripple causes substantial reduction

in skirt attenuation, i.e., optimality is lost.

B. Exact Synthesis

This may be carried out using the standard Darlington

procedure, i.e., the input reflection coefficient r is derived

from (6), (7) or (7), (13) as

177

The substitution x = –jp is made, and a Hurwitz factor-

ization of the denominator carried out. This process may

be simplified and the accuracy increased if due note is

taken of the fact that the denominator polynomial is of

even degree ( = 2n), and the factorization can take place

in the pz variable. Then the square root of each Pi2 root

factor is formed, and the ones with nonpositivc real parts

taken to form the Hurwitz polynomial. No factorization

of the numerator polynomial is required. The driving point

impedance is given by

z(p) = 1 + r(p)

1 – r(p)
(19)

from which the transfer matrix may be formed. Synthesis

of the prototypes shown in Fig. 4 is carried out by extracting

elements from each side of the filter until the central region

is reached. In the case of n even, extraction is carried out

including elements g~ _ ~ of Fig, 4(a), and for n odd includ-

ing the elements g~’ of Fig, 4(b). The central elements may

then be written down by inspection of the remainder

transfer matrix.

Results for the exact synthesis corresponding to cases

considered previously for the approximate synthesis are

presented in Table II. Here it is seen that the major devia-

tions occur in the central part of the filter (elements g4,

J3, and .lq).

C. Pole Locations

The changes which occur in the location of the complex-

frequency-plane poles of the transfer function upon intro-

ducing the real-frequency and real-axis transmission zeros

are shown in Fig. 8. Here the upper-left half-plane is shown,

and the poles are plotted for the Chebyshev prototype and

for the two other cases previously discussed in this paper

(i.e., the exact cases of Table II). The most interesting fea-

ture is that in the linear-phase (real-axis zeros) case the

poles tend to migrate to the vertical dotted line shown. In

the more complex type of linear-phase filters having several

extra cross couplings, the poles tend to lie on this vertical

line with almost equal vertical spacing [7].

IV. EQUIVALENT CIRCUITS FOR n ODII

Most of the linear-phase filters described in the previous

literature have been restricted to the even-degree case, since

it is often difficult to realize the circuit shown in Fig. 4(b)

in a direct manner. However, this circuit has the exact
rz =

h’f 2(x)

1 + h’fz(x) “ ,
(18)

TABLE II
COMPARISON OF APPROXIMATEAND EXACT DESIGNS: n = 8, VSWR =

1.05

p=- p=*l.07 p=~,l.62

Chebyzhev APDIOX. Exact APPrOX . Exact

91
0.67377 0.67377 0:66743 0.67377 0.6793G

92
1.33553 1.33553 1.32113 1.33553 1.34808

93
1.65623 1.65623 1.63253 1.65623 1.67622

94
1.65657 1.65657 1.69047 1.65657 1.74317

J3 0 0.21300 0.20659 -0.22048 -0.18015

J4 0.97590 0.80795 0.81216 1.24344 , 1.18407
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equivalent shown in Fig. 5(b), which is similar to the even-

degree realization of Fig. 4(a). The main difference is the

existence of one more element on the lower side of the

central rectangle compared with the upper side. Note that

if the circuit of Fig. 4(a) is converted into a bandpass filter

by means of a low-pass to bandpass transformation, then

the cross-coupling susceptance coC~’ transforms into a

resonant element rather than the desired frequency-

independent cross coupling. This difficult y does not arise

with the circuit of Fig. 5(b), which is a prototype yielding

band-pass linear-phase filters which are no more compli-

cated than those of even degree. The existence of this

simple odd-degree prototype results in extra design flexibility.

The circuit shown in Fig. 5(a) is also of interest, being a

direct lumped-element filter having no cross coupling, i.e.,

it possesses the more conventional low-pass prototype

format. The element values of these equivalent circuits may

be expressed in terms of those given in Fig. 4(b). It is

simple to convert circuit 4(b) into 5(a), since combining the

two admittance inverters with g~+ ~ in 4(b) gives the

transfer matrix

This represents a series inductance g~+ ~ in cascade with a

1: – 1 ideal transformer. The capacitor Cm’ is added in

parallel with this circuit, and elimination of the 1: – 1

transformer has the effect of changing the sign of Cm’.

(This statement may be proved by synthesizing the circuit
in the two ways.) Thus the result is

9m = 9?n’ 9i+l = 9~+1 Cm+l = ‘cm’. (21)

Hence to obtain real-frequency transmission zeros, Cm+ ~ is

positive in Fig. 5(a), but Cm’ is negative in Fig. 4(b), and

not realizable in the latter case. The opposite situation holds

for real transmission zeros.

Returning to the circuit of Fig. 5(b), which, as stated, is

of greater practical interest, the element values are expres-

sible in terms of those given in Fig. 4(b) as follows:

J.-l = cm’ =~
gm’ + cm’ 9m 1

(22)

J~ = 1/(1 + J~_l) (23)

9ml = 9m’ + cm’ (24)

9mz = 9m’(1 + J~_ J = g~’/J~ (25)

,
= J~2g; + ~.

‘m+ 1 = (1 :m;:- ,)2
(26)

The proof of these equations is given in Appendix II.

There is also the relationship for the location of the

transmission zeros, which from Fig. 4(b) is given as

a’ = ‘1 (27)
9L+I%’ “

Substituting for g~ + ~ and C~’ from (26) and (22) gives

J~-l = ~
– J~2

a gmlgm+l

(28)

This can be reexpressed in more revealing terms using (23)
as

J.-l =
– J.

a29m19~+l — J~2
(29)

which is similar to the expression (15) derived for the even-

degree case.

V. EXPERIMENTAL RESULTS

The first realization of microwave bandpass filters having

finite real-frequency attenuation poles were described by

Kurzrok [1], [2]. Other realizations using waveguide

cavities [5] or combline [6] are also feasible. The combline

structure is a particularly neat and simple solution for
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Fig. 10. Comparison of 8-cavit y linear-phase filter with 7-cavity Chebyshev filter.

coaxial or TEM line filters when finite frequency poles are

required. These require the addition of one cross-coupling

capacitor.

Most of the practical results obtained by the author are

for filters having real-axis transmission zeros. The design

of bandpass filters for the more general case has been

described by Rhodes [4], and these design techniques also

apply to the case where only one extra cross coupling is

present. Hence there is no need to repeat this theory here.

As stated previously, the main advantage of having just

one extra cross coupling lies in the ease of tuning, with some

advantage to be gained, particularly in the case of wave-

guide filters, in having a more convenient physical layout.

The mechanical construction of an 8-cavity waveguide

filter in WR137 is shown in Fig. 9, and its performance,

compared with that of a 7-cavity Chebyshev filter having the

same bandwidth and ripple level, is shown in Fig. 10. The

improved amplitude and delay of the self-equalized filter

are obtained at the cost of slightly increased insertion loss

and the loss of “one cavity” of attenuation compared with

the Chebyshev filter, as stated in Section II-B.. This filter

is designed using the n = 8, ripple VSWR = 1.05 proto-

type with transmission zeros located at ~ 1.07 (see Table

II). The equiripple bandwidth is 46 MHz, and the flat-delay

bandwidth is seen to be 50 percent of this, in agreement with

the theory. This delay characteristic, shown in Fig. 10, is

seen to possess an overcoupled characteristic, but it is quite

simple to tune it to have more or less such overcoupling

[12]. .

Similar filters have been constructed using high-Q

TEOI ~-mode cylindrical cavities, and in interdigital form.

W. CONCLUSIONS

The results presented demonstrate an interesting uni-

fication of the theories for the two cases of real-frequency

or real-axis (imaginary frequency) transmission zeros. The

approximate synthesis given is very simple to apply, and is

sufficiently precise for many practical applications.

In the case of the real-frequency attenuation pole, the

universal design curves given in Fig. 2 may bc compared

with those previously published for elliptic-function and

Chebyshev filters. The results are shown to have an inter-

mediate character, as demonstrated in Fig. 3. The single-

pole filter should be considered a viable alternative to the
more complicated elliptic-function design.

The case of real-axis transmission zeros gives the simplest
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Fig. 11. Matching condition to be established (approximate theory).

possible linear-phase filter, simple in both physical realiza-

tion and in ease of tuning, yet gives a vast improvement in

passband group delay compared with a Chebyshev filter of

equal skirt rejection performance.

The results presented for the odd-degree case, and’ espe-

cially the equivalent circuit of Fig. 5(b), give improved

design flexibility since it is no longer necessary to jump two

degrees to obtain greater skirt rejection.

These results have been extended to singly terminated and

other types of physically asymmetric filters used in diplexers.

This extension is rather obvious, and results are not pre-

sented in this paper. Such linear-phase diplexers have been

constructed and give results in agreement with predictions.

APPENDIX 1

The central portion of the network is shown in Fig. 1l(a).

The admittance matrix is

[

j jl gmrn – J.’ O

1

–J~’ g~w –1 “
(30)

–J~_l O –1 O

In order to obtain the two-port admittance matrix between

the input and output ports, it is necessary to eliminate the

12, 13, 42, and 43 entries in (30), (the 13 and 42 entries are

already zero), This can be accomplished by adding a suitable

linear combination of rows 2 and 3 to rows 1 and 4. Thus

if we take kl x row 2 and kz x row 3 and add to row 1

we obtain a new row 1 as

j(–kl, – 1 + klg~m – k2J~’, –klJ~’ + kzg~co,

– J~_l – kz). (31)

The second and third entries in (31) are zero if we choose

kl= 1 kz = ‘m’Jm12 (gm~)z– J~’2
(32)

gmcf.l– —
gmu

and the admittance matrix of Fig. 11(a) between the input

and output ports is therefore

[

k, k2 + J.-l

‘j k2 + J~_l 1kl “
(33)

The condition for no transmission is that the off-diagonal

entries be zero, this occurring at a frequency co = a,

giving’(15) as required.

The value of J~’ is to be chosen to match the circuit at

o = O, i.e., the equivalence of Fig. 11 must be established.

The admittance matrix of network 1l(b) is the same as (33)

with J~_ ~ = O and with the prime dropped from Jm’ in

(32). This leads immediately to the matching condition (17).

APPENDIX II

The, admittance matrix of the central 5 nodes of the

circuit in Fig. 4(b), neglecting elements g~_ ~, is

[

o –1 o 0 0

– 1 (gm’ + Cm’)ol – 1 – Cm’(n o

jO –1 9L+l@ –1

1

0.
0 – Cm’w – 1 (gm’+ Cm’)o – 1

0 0 0 -1 0
(34)

This may be converted to the circuit indicated as nodes 1–5

in Fig. 5(b) by eliminating the 24 coupling and introducing

14 coupling. The first step in this process is to add column

2 multiplied by the factor C~’/(gn’ + Cm’) to column 4,

plus a similar operation with respect to rows 2 and 4, giving

the admittance matrix

o

–1

o

– cm’

ym’+ cm’

o

–1

(gm’ + Cm’)w

–1

o

0

t-l
– cm!

(-)

gm’ + cm’

–1 o 0

9L+l@
(

–1+ cm’
)

o
gm’+ cm’

(
–1+

cm’
)( )

Cm’gm’ ~
gm’+ —

gm’+ cm’ gm’+ cm’

o –1 o

(35)
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The second step is to make the admittance inverter 34 unity by multiplying row 3 and column 3 by 1/(1 + J~_ ~) where

J~_ ~ = C~’/(g~’ + Cm’), giving the final admittance matrix representing the 5 nodes of Fig, 5(b) as

o

–1

o

I–cm’

gm’ + cm’

o

–1 o

(g; + C;)co –1
1 + J~-l

– cm’
o

gm’ + cm’

o 0

–1 9L+l@
–1 o

1 + J~_l (1 + J~-1)2

o

0

Equations (22)-(26) may now be written down by inspection

of matrix (36).
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