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Filters with Single Transmission Zeros at Real
or Imaginary Frequencies

RALPH LEVY, FELLOW, IEEE

Abstract—A new unified theory is presented for the synthesis of
exactly equiripple low-pass prototypes having: a) one simple pole of
attenuation at a real frequency; or b) a single pair of real-axis trans-
mission zeros (giving linear-phase performance). These types of filters
may be regarded as representing the least possible degree of complication
over the conventional Chebyshey filter, and are usually realized with one
extra cross coupling in the structure. It is demonstrated that this gives
much improved skirt selectivity in the case of a finite frequency pole,
making it a viable intermediate case between the Chebyshev and elliptic-
function filters, while in the case of real-frequency zeros, very flat group
delay over 50 percent of the passband is achieved with minimal cost in
insertion loss and skirt rejection. Approximate and exact synthesis
techniques are described, including results for the previously neglected
odd-degree case. Experimental results demonstrate agreement with
theory.

1. INTRODUCTION

HIS PAPER describes two classes of filters which have
quite distinct applications, yet are closely related
mathematically and in physical realization. They ate

Manuscript received July 18, 1975; revised October 27, 1975.
The author is with the Microwave Development Laboratories,
Natick, MA 01760.

distinguished by the location of their transmission zeros
(attenuation poles), which, in the case of the first class, are
at real frequencies, and in the case of the second class are at
imaginary frequencies (i.e., on the real axis of the complex
frequency plane). In this paper filters having only one pair
of transmission zeros are described, not only because these
cases may be synthesized exactly with no difficulty, but also
because they give important substantial improvements
compared with conventional Chebyshev equiripple filters, yet
with little practical difficulty of physical realization.

The transmission zeros may be realized by cross coupling
a pair of nonadjacent elements of the filter, negatively to
give real-frequency transmission zeros, positively to give
real-axis zeros. The first type of filter gives improved skirt
attenuation performance, and the second gives improved
passband delay characteristics compared with the ordinary
Chebyshev filter.

The first application of coupling between nonadjacent
resonators at microwave frequencies appears to have
originated with Kurzrok [1], [2]. He showed that to obtain
finite frequency attenuation poles it was necessary to
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reverse the “natural” phase of the extra cross coupling. It
was not until much later that Rhodes [3] showed that when
the cross couplings have the same phase as the direct
couplings then the finite transmission zeros produced are
either complex or on the real axis of the complex frequency
plane. Hence they may be used to design filters having
nonminimum-phase characteristics, e.g., linear-phase filters
[4]. Other authors have employed cross couplings to realize
elliptic-function filters, and recently more general types

@+ Va? = DT, 1() + (a = Va* — DT, 5(x) ~ 26T, 5(x)
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where
cos ¢ = x 3)
. 2 _
cos 0 = x_\/a 1 4

Ja? — x?
— 2
sin 0 = a\/l—x. 5)

\/az — X2

which may be expressed in terms of Chebyshev functions as

Sfx) =

2a® — x?)

having both finite attenuation poles and delay equalization
have been described [5]-[7].

Filters with several cross couplings tend to be relatively
difficult to tune, encouraging some designers to look at the
possibility of synthesizing high-ordered filters having just
one or two finite frequency transmission zeros [8], [9].
However, the low-pass filters discussed in [8] are not equi-
ripple and are therefore nonoptimum. The bandpass filters

described by Cristal [9] are for a somewhat limited applica- -

tion (interdigital filters of broad bandwidth) and require
extra resonant elements rather than cross couplings.

II. APPROXIMATION FUNCTIONS FOR SINGLE-POLE
FILTERS

A. Filters with a Real-Frequency Attenuation Pole

It is perhaps surprising that the low-pass rational function
to be introduced apparently has not been utilized previously,
at least for the applications described here, since it is
derived by a straightforward application of Chebyshev’s
theorem, a brief description of which may be found in [10].
The rational function has simple poles at x = a4, and takes
the form

oy = D) 0
a — x

where P,(x) is a polynomial of degree n. It is shown sche-
matically in Fig. 1 for the case » = 8 with a real value for
the parameter a. Application of Chebyshev’s theorem gives
the function (1) specifically in the form

f) = cos [(n — 2)¢ + 26] @

!

©)

This rational form is used in the exact synthesis method of
Section III-B. The low-pass prototype filter has an insertion
loss given by

A =1+ KfYx) )

where A is small for small passband ripple levels, and the
maximum passband return loss is defined as

Ag = 101log,, (1 + 1/A*) dB. ®

The location of the stopband minimum shown in Fig. 1
is derived by differentiation of (2) or (6), giving

x,2 = a* + 2ava® — 1J(n — 2) ©)

and the filter attenuation at this minimum is, therefore,

Ag = 101og;o [1 + #2f2(x,)] dB. (10)
Since 1/A% » 1 and A*f?(x,) > 1, we have
Ag + Ag ~ 20 log,, f(x,) dB (11)

which is independent of the passband ripple level.

The edge of the stopband is the value x, indicated in
Fig. 1, and is derived numerically by iteration. This enables
the value of Ax + Ag given by (11) to be plotted as a func-
tion of x,, as shown in Fig. 2 for filters of degree 3 through
10. Similar graphs are available for Chebyshev and optimum
elliptic-function filters [11], and when the characteristics
of the three types of filters are compared it is found that
for any given degree they are almost exactly parallel to one
another. This is illustrated in Fig. 3, which compares
elliptic-function, single-pole, and Chebyshev filters all of
degree 8. Here it is seen that the Chebyshev-filter plot of

)

- Fig. 1.

o b ——

Rational function with single pole (case » = 8).
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Ap + Ajg parallels that of the single-pole filter at ordinate
values approximately 22 dB lower, and the elliptic filter
parallels the single-pole filter at ordinate values approx-
imately 18 dB higher. The ordinate differences between
the three types of filters are given in Table I. Note that the
single-pole filters of degrees 3 and 4 are identical to the
elliptic filter, as expected. The improvement in skirt attenua-

§69)

ATTENUATION DIFFERENCES BETWEEN SINGLE-POLE FILTERS AND
CHEBYSHEV AND ELLIPTIC FILTERS AT THE STOPBAND EDGE FREQUENCY

n 3 4 5 6 7 8 9 10
Chebyshev (dB) -12 =151 -17.5 =19 -21 =22 -23 ~-24
Elliptic{dB) 0 0 6 9 15 18 24 27

No.of finite freq
poles in elliptic 1 1 2 2 3 3 4 4
filter

tion over a Chebyshev filter upon introducing finite poles
is quite large when one finite pole is introduced, and be-
comes successively less as subsequent poles are introduced.
Evidently the extra complexity of the elliptic-function filter
compared with the single-pole filter may not always be
justified. A

The physical realization and synthesis of the element
values of this low-pass prototype are described in Section
III.

B. Filters with Real-Axis Transmission Zeros
(Linear-Phase Filters)

Here the mathematical similarity between the two classes
of filters becomes apparent, since it is necessary only to take
the function (6) and make the substitution

a = jo' (12)
where ¢ is real. The function becomes
- o + 1 + 0*xT,_1(x) + (Jo? + 1 — 0)*xT,_3(x) — 26°T,_,(%) a13)

2(6* + x%)

-
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Hence the insertion loss function for an equiripple low-pass
filter having a pair of real-axis transmission zeros at
x = +jois

A =1+ Bf(x). , Q)

The introduction of the real-axis transmission zeros has
a large effect on the phase characteristics of this filter com-
pared to a similar Chebyshev filter. If the value of ¢ is
chosen correctly, then the group-delay characteristic in the
low-pass band becomes very flat over approximately 50
percent of the band, and also is improved over the rest
of the band. It is possible to realize group-delay curves
corresponding to undercoupled, critically coupled, and over-
coupled characteristics. Not surprisingly the optimum
value for ¢ is quite close to unity. The group delay may be
calculated from the synthesized circuit, and by slight adjust-
ment of ¢ it is possible to iterate rapidly to the desired delay
characteristic.

In this case the skirt attenuation is less than that of the
Chebyshev filter of identical degree. In practice it is found
that for values of ¢ near unity, giving a flat delay character-
istic, and for attenuation values in the useful range of about
. 20-80 dB, the skirt attenuation of the nth-degree linear-
phase filter is almost identical to that of the standard
Chebyshev filter of degree (» — 1). Hence it is hardly
necessary to present special curves for this type of linear-
phase filter. An example design is presented in Section V.

III. SYNTHESIS OF SINGLE-POLE PROTOTYPE FILTERS

The basic low-pass prototype filters may be synthesized
as the circuits shown in Fig. 4(b) for n odd, and in Fig. 4(a)
for n even. These are the admittance-inverter equivalent
circuits [4], where the rectangular boxes represent ideal
admittance inverters. The central elements of the circuit
for n odd are given primed values (g, ,9%+1,C,’) since
alternative equivalent circuits will be presented in this case

e

(b)

Fig. 4. Low-pass prototype filtérs. (a) n even (m = #/2). (b) » odd
(m = (n — 1)/2).
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metrical realization). (b) » odd (asymmetrical realization).

(see Fig. 5). The extra cross-coupling inverter of admittance
J,,—1 1s positive for the linear-phase filter, and negative for
the filter having a real-frequency pole. The extra cross-
coupling capacitance C,’ is also positive for the linear-
phase filter and negative for the single-pole filter. Hence it
cannot give a direct practical realization of the single-pole
filter. In this case, one of the equivalent circuits presented
in Fig. 5 could be used.

In the previous statements the term ‘“‘extra” denotes the
fact that the extra cross coupling is not present in the case
of a conventional Chebyshev filter, and that this cross-
coupling element represents the only extra feature in the
new design. )

Before describing results for the exact synthesis, an
approximate synthesis technique will be presented, which is
particularly useful for the case of linear-phase flters.

A. Approximate Synthesis

This may be achieved by introducing cross coupling
between one pair of nonadjacent elements of the standard
Chebysheyv filter while leaving all but one of the elements
unchanged. In the case of n even, where the low-pass
prototype filter is shown in Fig. 4(a), the element values are
given by the well-known formulas

2 sin —
2n
g =
Y
4 sin @r — = sin @r + D=
2n 2n
grgr—l = " s
9% + sin? —

n

(r=12--m), m=nf2
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y = sinh (1 sinh ™! 1)
n h
S = (/1 + h* + h)* (the passband VSWR)
Ju = JS---m odd or l/\/:S‘_---m even
Ju—1 = 0--- for Chebyshev filters. (14
In order to introduce transmission zeros at w = +a, the
required value of J,,_, is given by
—~J!
= TIm 15
m (agm)2 - Jm’2 ( )

where J,, is a slightly changed value of J,, as in (17). This
formula holds for both negative and positive cross coupling,
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ie., for a = jo
Ty

=_Jm_ 16
(09n)* + 12 10

m—1

Introduction of J,,.. ; mismatches the filter, and to maintain
a good VSWR at midband it is necessary to change the
value of J,, slightly according to the formula

It = Im
1+ J Ty

(17)

No other elements of the original Chebyshev filter are
changed. The proof of the equations (15)-(17) is given in
Appendix L

Typical results for this approximate design procedure are
shown in Figs. 6 and 7. In each case the original Chebyshev
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prototype filter is of degree n = 8, and a ripple VSWR of
1.05 is chosen, in accordance with typical specifications for
modern communications filters. In the case of the linear-
phase design depicted in Fig. 6 having transmission zeros
at ¢ = +1.07, the delay is essentially flat over 50 percent
of the passband, and the VSWR has deteriorated only
slightly. The exact element values derived by synthesis are
compared with the approximate values in Table II, and
differ at most by 3 percent. The implication here is that the
approximate theory may be used with confidence for linear-
phase prototypes, especially knowing that the element
values of a bandpass filter based upon the design will tune
to give the desired exact equiripple VSWR characteristic,
since in practice the various couplings need to be slightly
readjusted as part of the tuning process.

The result of introducing a finite attenuation pole at
o = 1.62, as shown in Fig. 7, is not quite as satisfactory
with the approximate theory. The VSWR has deteriorated
to a greater extent, and the cutoff frequency has increased
by approximately 10 percent. It is possible to amend (17) to
force a perfect match at band edge, but it is found that the
in-band VSWR is still quite poor compared with the
specification. The approximate and exact element values
given in Table II show quite large differences for the central
elements (5 percent for g, and J,, 22 percent for J;), and
bandpass filters based on the approximate design would
tend to have the large VSWR ripples near the band edges
in practice.

Another, perhaps more compelling, requirement for an
exact synthesis is that in the latter case (real-frequency
poles), (15) and (17) do not have a reasonable solution when
an attempt is made to move the finite pole closer to the edge
of the passband. Thus in the case of our N = 8, VSWR =
1.05 example, it is impossible to move the pole closer than
o = 1.53. Of course since the filter cutoff increases beyond
unity the renormalized pole value is actually less than 1.53,
but the VSWR deteriorates quite severely. The fact that the
VSWR is not exactly equiripple causes substantial reduction
in skirt attenuation, i.e., optimality is lost.

B. Exact Synthesis

This may be carried out using the standard Darlington
procedure, i.e., the input reflection coefficient I'" is derived
from (6), (7) or (7), (13) as
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The substitution x = —jp is made, and a Hurwitz factor-
ization of the denominator carried out. This process may
be simplified and the accuracy increased if due note is
taken of the fact that the denominator polynomial is of
even degree (= 2n), and the factorization can take place
in the p? variable. Then the square root of each p;? root
factor is formed, and the ones with nonpositive real parts
taken to form the Hurwitz polynomial. No factorization
of the numerator polynomial is required. The driving point
impedance is given by

(19)

from which the transfer matrix may be formed. Synthesis
of the prototypes shown in Fig. 4 is carried out by extracting
elements from each side of the filter until the central region
is reached. In the case of n even, extraction is carried out
including elements g,,.. , of Fig. 4(a), and for » odd includ-
ing the elements g, of Fig. 4(b). The central elements may
then be written down by inspection of the remainder
transfer matrix.

Results for the exact synthesis corresponding to cases
considered previously for the approximate synthesis are
presented in Table II. Here it is seen that the major devia-
tions occur in the central part of the filter (clements g,,
Js, and Jy).

C. Pole Locations

The changes which occur in the location of the complex-
frequency-plane poles of the transfer function upon intro-
ducing the real-frequency and real-axis transmission zeros
are shown in Fig. 8. Here the upper-left half-plane is shown,
and the poles are plotted for the Chebyshev prototype and
for the two other cases previously discussed in this paper
(i.e., the exact cases of Table II). The most interesting fea-
ture is that in the linear-phase (real-axis zeros) case the
poles tend to migrate to the vertical dotted line shown. In
the more complex type of linear-phase filters having several
extra cross couplings, the poles tend to lie on this vertical
line with almost equal vertical spacing [7].

IV. EQUIVALENT CIRCUITS FOR # ODD

Most of the linear-phase filters described in the previous
literature have been restricted to the even-degree case, since

242 . . . .. .
2 _ W) it is often difficult to realize the circuit shown in Fig. 4(b
= gy | X e
.1+ RAA(%) ) in a direct manner. However, this circuit has the exact
TABLE II
COMPARISON OF APPROXIMATE AND EXACT DESIGNs: # = 8, VSWR =
1.05
. p=e p=t1.07 p=tjl.62
Chebyshev Approx. Exact Approx. Exact
N 0.67377 0.67377 0.66743 0.67377 0.67938
9, 1.33553 1.33553 1.32113 1.33553 1.34808
ER 1.65623 1.65623 1.63253 1.65623 1.67622
P 1.65657 1.65657 1.69047 1.65657 1.74317
J3 0 0.21300 0.20659 -0.22048 ~0.18015
J4 0.97590 0.80795 0.81216 1.24344 1.18407
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equivalent shown in Fig. 5(b), which is similar to the even-
degree realization of Fig. 4(a). The main difference is the
existence of one more element on the lower side of the
central rectangle compared with the upper side. Note that
if the circuit of Fig. 4(a) is converted into a bandpass filter
by means of a low-pass to bandpass transformation, then
the cross-coupling susceptance wC,,’ transforms into a
resonant element rather than the desired frequency-
independent cross coupling. This difficulty does not arise
with the circuit of Fig. 5(b), which is a prototype yielding
band-pass linear-phase filters which are no more compli-
cated than those of even degree. The existence of this
simple odd-degree prototype results in extra design flexibility.

The circuit shown in Fig. 5(a) is also of interest, being a
direct lumped-element filter having no cross coupling, i.e.,
it possesses the more conventional low-pass prototype
format. The element values of these equivalent circuits may
be expressed in terms of those given in Fig. 4(b). It is
simple to convert circuit 4(b) into 5(a), since combining the
two admittance inverters with g, in 4(b) gives the
transfer matrix

G 8 loro )G 0) = (75

This represents a series inductance g, , in cascade with a
1:—1 ideal transformer. The capacitor C,’ is added in
parallel with this circuit, and elimination of the 1:—1
transformer has the effect of changing the sign of C,’ .
(This statement may be proved by synthesizing the circuit
in the two ways.) Thus the result is

o). o)

Im = gml Cm+1 = _Cm,' (21)
Hence to obtain real-frequency transmission zeros, C, ., is
positive in Fig, 5(a), but C,’ is negative in Fig. 4(b), and
not realizable in the latter case. The opposite situation holds
for real transmission zeros.

Returning to the circuit of Fig. 5(b), which, as stated, is

' —_
Im+1 = Gm+1

of greater practical interest, the element values are expres-
sible in terms of those given in Fig. 4(b) as follows:

Jooy = _ G = Cw (22)
I + Co G

Ju = 1A + Jp_y) (23)

Imt = 9u' + Cy (24)

Imz = G’ (L + T ) = G0l m (25

s = ity f‘";:_ 53 = i (26)

The proof of thése equations is given in Appendix II.
There is also the relationship for the location of the
transmission zeros, which from Fig. 4(b) is given as

a2 = ’;17. (27)
Im+ 1 Cm
Substituting for g,,., and C,,’ from (26) and (22) gives
- Jm2
=1 = 5—2—. (28)
CIm19m+1

This can be reexpressed in more revealing terms using (23)
as

-J,

2 2
CTYIn1Gm+1 — ‘]m

-1 = (29)
which is similar to the expression (15) derived for the even-
degree case.

V. EXPERIMENTAL RESULTS

The first realization of microwave bandpass filters having
finite real-frequency attenuation poles were described by
Kurzrok [1], [2]. Other realizations using waveguide
cavities [ 5] or combline [6] are also feasible. The combline
structure is a particularly neat and simple solution for
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Fig. 9. 8-cavity WR137 waveguide linear-phase filter.
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coaxial or TEM line filters when finite frequency poles are
required. These require the addition of one cross-coupling
capacitor. .

Most of the practical results obtained by the author are
for filters having real-axis transmisson zeros. The design
of bandpass filters for the more general case has been
described by Rhodes [4], and these design techniques also
apply to the case where only one extra cross coupling is
present. Hence there is no need to repeat this theory here.
As stated previously, the main advantage of having just
one extra cross coupling lies in the ease of tuning, with some
advantage to be gained, particularly in the case of wave-
guide filters, in having a more convenient physical layout.

The mechanical construction of an 8-cavity waveguide
filter in WRI137 is shown in Fig. 9, and its performance,
compared with that of a 7-cavity Chebyshev filter having the
same bandwidth and ripple level, is shown in Fig. 10. The
improved amplitude and delay of the self-equalized filter
are obtained at the cost of slightly increased insertion loss
and the loss of “one cavity” of attenuation compared with
" the Chebyshev filter, as stated in Section II-B.. This filter
is designed using the n = 8, ripple VSWR = 1.05 proto-
type with transmission zeros located at +1.07 (see Table

II). The equiripple bandwidth is 46 MHz, and the flat-delay
bandwidth is seen to be 50 percent of this, in agreement with
the theory. This delay characteristic, shown in Fig. 10, is
seen to possess an overcoupled characteristic, but it is quite
simple to tune it to have more or less such overcoupling
[12]. ‘ \ .
Similar filters have been constructed using high-Q
TE,; ;-mode cylindrical cavities, and in interdigital form.

VI. CONCLUSIONS

The results presented demonstrate an interesting uni-
fication of the theories for the two cases of real-frequency
or real-axis (imaginary frequency) transmission zeros. The
approximate synthesis given is very simple to apply, and is
sufficiently precise for many practical applications.

In the case of the real-frequency attenuation pole, the
universal design curves given in Fig. 2 may be compared
with those previously published for elliptic-function and
Chebyshev filters. The results are shown to have an inter-
mediate character, as demonstrated in Fig. 3. The single-
pole filter should be considered a viable alternative to the
more complicated elliptic-function design. : ‘

The case of real-axis transmission zeros gives the simplest
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(@
Fig. 11.

possible linear-phase filter, simple in both physical realiza-
tion and in ease of tuning, yet gives a vast improvement in
passband group delay compared with a Chebysheyv filter of
equal skirt rejection performance.

The results presented for the odd-degree case, and espe-
cially the equivalent circuit of Fig. 5(b), give improved
design flexibility since it is no longer necessary to jump two
degrees to obtain greater skirt rejection.

These results have been extended to singly terminated and
other types of physically asymmetric filters used in diplexers.
This extension is rather obvious, and results are not pre-
sented in this paper. Such linear-phase diplexers have been
constructed and give results in agreement with predictions.

APPENDIX 1
The central portion of the network is shown in Fig. ll(a)
The admittance matrix is

0 ~1 0 -

m—1
. ~1 gmew —=J, 0
1T o -1/ go =1 (0)
—J -1 0 -1 0

In order to obtain the two-port admittance matrix between
the input and output ports, it is necessary to eliminate the
12, 13, 42, and 43 entries in (30), (the 13 and 42 entries are
already zero). This can be accomplished by adding a suitable
linear combination of rows 2 and 3 to rows 1 and 4. Thus
if we take k; x row 2 and k£, x row 3 and add to row 1
we obtain a new row 1 as

j(_kla -1+ klgmw - kZJm,a _kl']m’ + ngmwa
-1 = ka). (31

The second and third entries in (31) are zero if we choose

{w=0)

Matching condition to be established (approximate theory).

1 g,
R L
Gl — Jm (gmw) - Jm
Im®

and the admittance matrix of Fig. 11(a) between the input
and output ports is therefore

ki

. ky + Jpey
/ [kz + -1 ] 33)

ki

The condition for no transmission is that the off-diagonal
entries be zero, this occurring at a frequency w = q,
giving (15) as required.

The value of J,,” is to be chosen to match the circuit at
o = 0, i.e., the equivalence of Fig. 11 must be established.
The admittance matrix of network 11(b) is the same as (33)
with J,,_; = 0 and with the prime dropped from J,’ in
(32). This leads immediately to the matching condition (17).

APPENDIX I1

The, admittance matrix of the central 5 nodes of the
circuit in Fig. 4(b), neglecting elements g,,_;, is

0 -1 0 0 0
-1 (9. + C,ho -1 -C,/ o 0
jl o -1 Im+1® -1 0
0 -C, o -1 (9. + CHo -1
0 0 0 -1 0
(34)

This may be converted to the circuit indicated as nodes 1-5
in Fig. 5(b) by eliminating the 24 coupling and introducing
14 coupling. The first step in this process is to add column
2 multiplied by the factor C,’/(g,’ + C,’) to column 4,
plus a similar operation with respect to rows 2 and 4, giving
the admittance matrix

[ 0 -1 0 =G 0
g’ + Cy
-1 (9., + C,)w -1 0 0
il o -1 s 1@ - (1 + C—"') 0° (35)
m+1 gm, + Cm, .

i & 0 _(1+_Cm_) (gm'+cmi)w -1
Im + Co g + G Im + G
0 0 0 -1 0 ]
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The second step is to make the admittance inverter 34 unity by multiplying row 3 and column 3 by 1/(1 + J;,_) where
Ju-1 = C,' (g4 + C,), giving the final admittance matrix representing the 5 nodes of Fig. 5(b) as

0 -1 0 i 0
Im + Gy
-1
-1 W+ Co —— 0 0
(g ) v 7. .
2
L+ Jpuy (U + )

__C ! C Ig 7 )
_—~m 0 -1 ( o+ —2Im Ve —1
Im + Gy . I Im + Cu
| o 0 0 —1 0 |

Equations (22)-(26) may now be written down by inspection
of matrix (36). '
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